Introduction to RipQP

by Geoffroy Leconte

JSON 0.21.4 MatrixMarket 0.3.1 RipQP 0.6.3 DelimitedFiles 1.9.1 QuadraticModels 0.9.5 SparseMatricesCOO 0.2.2 Plots 1.39.0 QPSReader 0.2.1 LDLFactorizations 0.10.1 TimerOutputs 0.5.23

Input

RipQP uses the package QuadraticModels.jl to model convex quadratic problems.

Here is a basic example:

using QuadraticModels, LinearAlgebra, SparseMatricesCOO
Q = [6. 2. 1.
     2. 5. 2.
     1. 2. 4.]
c = [-8.; -3; -3]
A = [1. 0. 1.
     0. 2. 1.]
b = [0.; 3]
l = [-1.0;0;0]
u = [Inf; Inf; Inf]
QM = QuadraticModel(
  c,
  SparseMatrixCOO(tril(Q)),
  A=SparseMatrixCOO(A),
  lcon=b,
  ucon=b,
  lvar=l,
  uvar=u,
  c0=0.,
  name="QM"
)
QuadraticModels.QuadraticModel{Float64, Vector{Float64}, SparseMatricesCOO.SparseMatrixCOO{Float64, Int64}, SparseMatricesCOO.SparseMatrixCOO{Float64, Int64}}
  Problem name: QM
   All variables: ████████████████████ 3      All constraints: ████████████████████ 2     
            free: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                 free: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           lower: ████████████████████ 3                lower: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           upper: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                upper: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
         low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0              low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                fixed: ████████████████████ 2     
          infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0               infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
            nnzh: (  0.00% sparsity)   6               linear: ████████████████████ 2     
                                                    nonlinear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
                                                         nnzj: ( 33.33% sparsity)   4     

  Counters:
             obj: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                 grad: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                 cons: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
        cons_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0             cons_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                 jcon: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           jgrad: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                  jac: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0              jac_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
         jac_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                jprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0            jprod_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
       jprod_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0               jtprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0           jtprod_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
      jtprod_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                 hess: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                hprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           jhess: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0               jhprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0

Once your QuadraticModel is loaded, you can simply solve it RipQP:

using RipQP
stats = ripqp(QM)
println(stats)
Generic Execution stats
  status: first-order stationary
  objective value: 1.1250000001819647
  primal feasibility: 5.253818735984856e-13
  dual feasibility: 4.5240388878182354e-11
  solution: [-6.602556960437742e-11  1.499999999967075  6.550018773077893e-11]
  multipliers: [-5.000000000443094  2.249999999907261]
  multipliers_L: [1.3498983056074131e-12  9.350004367856938e-13  2.7500000006802963]
  multipliers_U: [0.0  0.0  0.0]
  iterations: 5
  elapsed time: 7.794533014297485
  solver specific:
    iters_sp: 5
    pdd: 1.002449365261327e-10
    psoperations: ∅
    iters_sp3: 0
    iters_sp2: 0
    relative_iter_cnt: 20

The stats output is a GenericExecutionStats.

It is also possible to use the package QPSReader.jl in order to read convex quadratic problems in MPS or SIF formats: (download QAFIRO)

using QPSReader, QuadraticModels
QM = QuadraticModel(readqps("assets/QAFIRO.SIF"))
QuadraticModels.QuadraticModel{Float64, Vector{Float64}, SparseMatricesCOO.SparseMatrixCOO{Float64, Int64}, SparseMatricesCOO.SparseMatrixCOO{Float64, Int64}}
  Problem name: Generic
   All variables: ████████████████████ 32     All constraints: ████████████████████ 27    
            free: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                 free: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           lower: ████████████████████ 32               lower: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           upper: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                upper: ███████████████⋅⋅⋅⋅⋅ 19    
         low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0              low/upp: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           fixed: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                fixed: ██████⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8     
          infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0               infeas: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
            nnzh: ( 98.86% sparsity)   6               linear: ████████████████████ 27    
                                                    nonlinear: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
                                                         nnzj: ( 90.39% sparsity)   83    

  Counters:
             obj: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                 grad: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                 cons: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
        cons_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0             cons_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                 jcon: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           jgrad: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                  jac: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0              jac_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
         jac_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                jprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0            jprod_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
       jprod_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0               jtprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0           jtprod_lin: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
      jtprod_nln: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                 hess: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0                hprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0     
           jhess: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0               jhprod: ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 0

Logging

RipQP displays some logs at each iterate.

stats = ripqp(QM)
"Execution stats: first-order stationary"

You can deactivate logging with

stats = ripqp(QM, display = false)
"Execution stats: first-order stationary"

It is also possible to get a history of several quantities such as the primal and dual residuals and the relative primal-dual gap. These quantites are available in the dictionary solver_specific of the stats.

stats = ripqp(QM, history = true)
pddH = stats.solver_specific[:pddH];

Change configuration and tolerances

You can use RipQP without scaling with:

stats = ripqp(QM, scaling = false)
"Execution stats: first-order stationary"

You can also change the RipQP.InputTol type to change the tolerances for the stopping criteria:

stats = ripqp(QM, itol = InputTol(max_iter = 100, ϵ_rb = 1e-4), scaling = false)
"Execution stats: first-order stationary"

Save the Interior-Point system

At every iteration, RipQP solves two linear systems with the default Predictor-Corrector method (the affine system and the corrector-centering system), or one linear system with the Infeasible Path-Following method.

To save these systems, you can use:

w = SystemWrite(write = true, name="test_", kfirst = 4, kgap=3)
stats1 = ripqp(QM, w = w)
"Execution stats: first-order stationary"

This will save one matrix and the associated two right hand sides of the PC method every three iterations starting at iteration four. Then, you can read the saved files with:

using DelimitedFiles, MatrixMarket
K = MatrixMarket.mmread("test_K_iter4.mtx")
rhs_aff = readdlm("test_rhs_iter4_aff.rhs", Float64)[:]
rhs_cc =  readdlm("test_rhs_iter4_cc.rhs", Float64)[:];

Timers

You can see the elapsed time with:

stats1.elapsed_time
0.12202596664428711

For more advance timers you can use TimerOutputs.jl:

using TimerOutputs
TimerOutputs.enable_debug_timings(RipQP)
reset_timer!(RipQP.to)
stats = ripqp(QM)
TimerOutputs.complement!(RipQP.to) # print complement of timed sections
show(RipQP.to, sortby = :firstexec)
──────────────────────────────────────────────────────────────────────
                              Time                    Allocations      
                     ───────────────────────   ────────────────────────
  Tot / % measured:       259ms /   0.0%           22.6MiB /   0.0%    

 Section     ncalls     time    %tot     avg     alloc    %tot      avg
 ──────────────────────────────────────────────────────────────────────
 factorize       10   38.8μs  100.0%  3.88μs     0.00B     - %    0.00B
 ──────────────────────────────────────────────────────────────────────